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Abstract- The ability of an AUV to navigate an underwater
environment precisely and for an extended period depends on its
effectiveness at making accurate observations regarding its
location and orientation. An AUV platform equipped with a side-
scan sonar system has the potential to register the current sonar
image with previously captured images for the purpose of
obtaining information about the vehicle’s pose. Image
registration is a procedure which transforms images viewed from
different perspectives into a single coordinate system. The
significance of using image registration techniques in a surveying
or monitoring context comes from the fact that the registration
parameters could provide the AUV with an indication of the
discrepancy between its expected and observed pose vectors. As
such, image registration provides feedback which can be used to
compensate for drift in inertial sensors or to provide a standalone
navigation solution in the event that the inertial navigation
system fails. In order for image registration to provide an
effective means for feedback, a number of requirements on the
performance of the image registration method employed must be
met. Not only must the method be accurate in the face of possible
image variations, but it must operate in real-time using the
limited computing resources available within an AUV. In this
paper, a number of key image registration techniques are applied
to side-scan sonar images. These techniques include those based
on the maximization of mutual information, log-polar cross-
correlation, the Scale-Invariant Feature Transform (SIFT), and
phase correlation. The performance of these techniques is
assessed based on a number of metrics including execution time
and registration accuracy. The challenges introduced by side-
scan sonar imaging systems which degrade the performance of
image registration are also discussed in detail.

1. INTRODUCTION

Today, AUVs can provide an effective alternative to manned
vessels for a variety of routine marine applications, such as
surveying and monitoring. AUVs may be deployed for use in
mine countermeasures, underwater equipment inspection, or
research activities. The REALM project led by Memorial
University focuses on expanding the capabilities of the
Explorer' AUV platform in particular, and developing novel
techniques for AUV navigation and surveying capabilities in
general. Navigation itself plays a very important role in
enabling the autonomous operation of an AUV not only as a
path planning subsystem, but also to ensure the safety and
recovery of the vehicle. Navigation systems which try to
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maintain a pose vector become plagued with drift errors over
time and are not correctable in the absence of geographical
positioning feedback. Most navigation systems in use today
are of this type [1]. They obtain a current estimate of the
AUV’s location and orientation through the use of inertial
sensors and must periodically resurface to receive Global
Positioning System (GPS) feedback. A side-scan sonar system
can provide an AUV with a framework for developing highly
sophisticated navigation systems through the use of techniques
borrowed from the area of computer vision. An AUV carrying
a side-scan sonar system within its payload can extract an
enormous amount of information about its current
surroundings in the form of sonar images.

Applying image processing and computer vision techniques
to side-scan sonar images is not new. Seabed textural
segmentation methods were studied in [2]. Feature extraction
techniques were also developed in [3], and [4].The registration
of side-scan sonar images through phase correlation, mutual
information, and the correlation ratio was presented in [5] with
successful results. Some interesting work was undertaken in [6]
on the derivation of a statistical technique for the correction of
geometric distortions in side-scan sonar images. However, as
of yet, to our knowledge, practical image registration as an
online AUV navigation tool has yet to be demonstrated.

Image registration is a procedure which transforms images
viewed from different perspectives into a single coordinate
system. In our case we wish to obtain the transformation
matrix which maps a currently viewed side-scan sonar image
(sensed image) to one which was previously observed and
stored in a database (reference image). However, realistically
the procedure described here is faced with a number of
challenges. The nature of side-scan sonar sensors, the acoustic
medium, and the dynamics of the vehicle introduce a variety
of image distortions which will degrade the effectiveness of
this scheme. This paper will discuss the nature of the problem
in further detail and present side-scan sonar image registration
results based on the maximization of mutual information,
phase correlation, the Scale-Invariant Feature Transform, and
cross-correlation via the log-polar transform.

In section II we discuss image capture using a side-scan
sonar system and the factors which come to degrade the
quality of these images. Section III establishes the
transformation model used by the following registration
algorithms. Section IV briefly introduces the image sets that
were used to obtain the results. Sections V and VI present the
registration algorithms and results, respectively.



Figure 1. From left to right: test image sets A through E, each set corresponds to a column-wise pair.

II. SIDE-SCAN SONAR

Side-scan sonar systems produce high resolution image
representations (or sonograms) of acoustic backscatter. They
operate by emitting a narrow (in the fore-aft direction)
acoustic pulse perpendicular to the along-track direction
vector and out each side of the sonar. The pulse spreads out
over a wide angle in the across-track plane to ensonify the
seabed, as shown in Figure 2.
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Figure 2. A depiction of a side-scan sonar imaging system.

The distance from the sonar to a point on the seafloor is
called the slant-range. The width along the seafloor covered
by the acoustic pulse (ping) is referred to as the swath width.
In the received signal, regions along the swath which produce
strong backscatter will appear lighter within the image scan
line. Protruding objects on the seabed will produce highlighted
(echo) regions followed by a dark “shadow” adjacent to the
object. This occurs since no acoustic energy is capable of
reaching this region. The horizontal length of this shadow will
vary depending on where the object is in the across-track
direction relative to the sonar. The shadow may also appear
differently depending on the vantage point of the sonar. This is
in contrast with optical images in which shading depends only
on the location of the source of illumination. With sonar the

source and receiver are collocated and, as such, changing the
viewpoint not only induces a change in perspective, but
actually changes the shading of the scene.

As a ping propagates away from the sonar, the beam width
in the along-track direction expands. This in turn has the effect
of a decreased along-track image resolution at points
sufficiently far from the sonar. Multiple collinear landmarks
running parallel to the along track at a long range from the
sonar could appear merged together in the final image.
Obviously, one might think that this problem can be
sidestepped by simply accepting data from within a shorter
range. However, a similar problem exists which affects the
across-track resolution. Depending on the pulse duration,
multiple collinear landmarks running perpendicular to the
along-track direction and closer to the sonar could appear
merged in the final image. This is due to the fact that the
pulse’s “footprint” on the seabed is longer nearer to the sonar
and becomes shorter as the pulse propagates outward. Hence,
there is a tradeoff between the resolutions in the across-track
versus along-track directions.

Additional aspects which influence the amount of
backscatter seen at the sonar are the structure and absorptivity
of the seabed. Regions which contain coarse sediment will
tend to reflect more energy back to the acoustic sensor and
will show up brighter. Areas which absorb much of the energy
will show up darker in intensity. These effects depend on the
seabed material, the measure of coarseness, the frequency of
the transmitted pulse, and the angle of incidence among other
factors. One consequence of this is that these regions display
unique textures within the resulting image. In addition, areas
of seabed which produce a very high specular reflection could
also be mistakenly classified as shadow.

There are numerous factors which come to impact the
accuracy of image interpretation. They include changes to the
velocity, orientation (roll, pitch, and yaw), heave and sway of
the vehicle, acoustic noise, beam pattern, and the absorptivity



and structure of the reflecting surfaces for example. Although,
some types of noise, such as white noise, can be easily
reduced through the use of filters in a pre-processing stage.
Geometric image distortions can arise on account of the
dynamics of the vehicle. Most sonar transducers, whether
contained within an AUV’s payload or part of a towfish
construction, will usually undergo changes in orientation,
velocity, and sway. Some of these dynamics are more present
in a towfish configuration since surge and heave in the towing
ship will have a large impact on the towfish.

III. TRANSFORMATION MODEL

For simplification, in this work we consider the AUV to be
constrained by 3 degrees of freedom. They include the
freedom of translatory motion in the x-y directions and the
freedom to rotate within a 2D plane parallel to the surface. It is
also assumed that the AUV remains at a constant depth, which
is typical for many survey applications. In terms of image
registration, this is known as a 2D rigid-body registration
model.

The transformation matrix corresponding to this model is
given by:
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where (Wand \Ware the components of rotation and
translation, respectively.

IV. TEST DATA

For our purposes we have assumed that the AUV has the
ability to travel in a straight line with only minor deviations
from its intended course. As such, we can expect only minor
geometric distortion within the images obtained by the side-
scan sonar.

The results presented in this paper are derived from the five
pairs of side-scan sonar images shown in Figure 1. The image
pairs correspond to independent observations of the same
region of seabed. However, the orientation difference between
the reference and sensed images for each case has been
artificially induced. The ground truth transformation
parameters for each pair are summarized in Table I. The
ground truth transformation parameters were obtained through
manual measurement.

TABLE I
Ground Truth for Image Pairs Shown in Figure 1
Set A B C D E
VL]H| 450x450 450x450 450x450 450x450 450x450
aWws [ 15 -45 -57 -138 -74
aWws [ 199 -245 43 -158 -236
z 0 -10 -20 -30 -40

The root mean squared error is calculated for each test to
measure the accuracy of the registration against the ground
truth parameters.

V. IMAGE REGISTRATION
A. Global Registration Methods

L OXWXDO ,QIRUPDWLRQ

Viola and Wells presented one of the first papers detailing a
method of image registration through the maximization of
mutual information (MI) [7]. Since then, mutual information
has found wide application in the area of medical image
registration [8], [9]. This is due to the fact that MI does not
depend on the spatial relationship between pixels, as
correlation or gradient based methods do. Instead, it draws on
the statistical dependence between the reference and sensed
images making it suitable for the registration of images
obtained from different sensors. In [5], Chailloux and Zerr
apply mutual information to the registration of salient features
within sonar images. From their explanation it appears that
their utilization of the technique may be limited in its ability to
handle a wide range of rotations. In contrast, we have chosen
to assess the performance of MI-based registration as it
operates on the images globally in a way that can handle
orientation misalignment.

Let X and Y be random variables with marginal probability
[density functioné{v S [and § \, and joint probability density
\function, §\ [ Whe mutual information of X and Y can be
written as

(D=2 O D=+, + [\

where + [is the entropy of the random variable X written as

+()==2[ ()log,( (( )S [
[
and + [ \is the joint entropy of X and Y:

+L¥-D ((SHlog,(\(, NS [\
L

From (1) it is apparent that M1 is maximized when the joint
entropy term is minimized.

If we treat image pixel values as random variables over the
coordinate space of the image, and use the definition of the
rigid body transformation introduced earlier, we can determine
the transformation which maps the sensed image to the
reference image as follows:

A:DlﬁJIPD([, ) (L)),

where X Mpresents the location of a pixel within the image
coordinate system. The MI estimate is taken over all pixel
locations within the overlapping region between the reference
and the sensed image under the transformation 7 Although
there have been many optimization schemes proposed in the
literature [10], we have chosen to employ a blind exhaustive
search for the correct transformation parameters while varying
translation and rotation step sizes to improve performance.
The implementation involves the estimation of the joint
marginal probability mass function (pmf) through the



Figure 3. Joint histograms for a) spatially aligned images, b) 180 degree
angular offset.

construction of a joint histogram. The marginal pmf’s of X
and Y are then obtained by summing along the y and x axes
respectively. When the reference and sensed images are
maximally aligned the mutual information is also maximized
and the joint histogram appears as is shown in Figure 3,
assuming that the two images are identical. As the joint
entropy increases, the dispersion in the joint histogram
increases.

LL 3KDVH &RUUHODWLRQ

The application of phase correlation to images for the
purpose of image registration has been around for some time
[11], [12], [13]. At the heart of phase correlation is the Fourier
transform. Implementations using the Fast Fourier Transform
(FFT) algorithm can be characterized as being highly robust to
noise and non-uniform illumination changes, and
computationally efficient. This method differs from other
registration techniques in that registration is performed
entirely in the frequency domain.

Say we have two images | X ¥d | X tat are related by

LX) (-l % X Y Y (1)

The Fourier shift theorem states that their spectra are related
by a constant complex multiplication factor:

L(Bom)y= "M (B Y )

The cross-power spectrum of | and | is defined by
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The phase correlation function is obtained by taking the
inverse Fourier transform of the cross-power spectrum and is
parameterized by X YThe phase correlation function will
have a dominant peak at )& ¥ where the correlation of the
phase spectra of | and | is maximal.

From [13], extending (1) to the case where |is a translated
and rotated version of | gives

LCX)=Y (cds&@X sing —Y,— sindX% cos0 — ).

From the Fourier shift and Fourier rotation theorems, | and
| are related in the frequency domain by
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where R and )X ¥ are the rotation and translation
differences between | and | respectively. It is apparent from
(2) and (3) that rotating an image has the effect of rotating its
spectrum through the same angle. Therefore, to determine the
rotation difference between the two images, we can simply
apply the same phase correlation function described above to
the log-polar transformation of their magnitude spectra.

In practice, a number of additional pre-processing steps are
required. The sharp transition at the edges of an image
produces a characteristic “+” shaped pattern in frequency
domain. The pattern is reduced significantly by tapering off
the edges of the images. Image background intensity
contributes to a strong DC component within the frequency
domain that can contribute to false registration. This is
compensated for by first computing the mean over the entire
image and subtracting it from each pixel value. In addition,
once the images are transformed to their frequency domain
counterparts, the high-pass emphasis filter described in [13] is
applied.

B. Feature-Based Registration

L 6FDOH ,QYDULDQW )HDWXUH 7UDQVIRL

SIFT is a widely used computer vision algorithm developed
by David Lowe at the University of British Columbia [14]. It
was initially chosen for this work because it has a proven track
record for image stitching applications. Also, many efficient
implementations of this algorithm have been developed. SIFT
is an algorithm that is capable of extracting image keypoints
which are rotation, scale invariant, and robust to a range of
affine transformations. SIFT consists of the following
processing stages: scale-space extrema detection, keypoint
localization, orientation assignment, and keypoint description.

The Difference of Gaussian (DoG) function -closely
approximates the scale-normalized Laplacian of Gaussian
(LoG) function and, as such, can be used to identify interest
points within the image. It has been shown [15] that the
maxima and minima of the LoG provide highly stable image
features when compared to other keypoint extraction methods.
A search is performed over the image at multiple scales to
identify these extrema. Upon identifying a keypoint, its
location is refined by fitting a quadratic to the DoG in the
neighbourhood of the keypoint using a Taylor expansion. The
assignment of an orientation to the keypoint is necessary to
ensure rotation invariance. This is accomplished by
determining the predominant orientation of the gradient
vectqys in its vicinity. Using the scale, location, and
orientatiorf information a description of the keypoint is then
produced. The orientation is used to assign a local coordinate
system to the keypoint. The gradients at points within a region



surrounding the origin of this coordinate system are sampled,
weighted, and stored in a 128 element description vector
(descriptor). Once a descriptor is obtained for the newly
observed keypoint, an attempt will be made to match it to the
descriptor of a previously observed keypoint. A common way
to do this is to perform a nearest-neighbour search over the set
of keypoint descriptors in a database. Various heuristics can
be used to improve matching effectiveness. However, using a
nearest-neighbour measure tends to come up with many false
matches when applied to sonar imagery. To overcome these
outliers, and in the final step of this image registration
procedure, we attempt to estimate the transformation model by
applying the RANSAC algorithm [16].

C. Hybrid Approach
L /RJ 3RODU 7UDQVIRUP
The log-polar transform maps an image based in a Cartesian

coordinate system to a polar coordinate system through the use
of the following formulae:

=JU- V(|

( -\ j Vo
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where ® and [r } are the polar angle and center coordinates
of the image window, respectively. Image rotation in the
Cartesian coordinate space manifests itself as a simple circular
shift in the polar coordinate space [17]. An example of this is
shown in Figure 4.

[ \

a)

b)

Figure 4. a) Log-polar transform about the center of image on the left. b) Log-
polar transform following a 90° rotation.

LL 1RUPDOL]JHG &URVYVY &RUUHODWLRQ

Image registration via the log-polar transformation
essentially extends the familiar cross-correlation based
similarity measure to include the ability to handle rotated
images. Image cross-correlation is a dense area-based
comparison technique which operates on pixel intensity levels
directly. The normalized cross-correlation between two
images can be written as

Z( - ( I)( (,.L)_M (v(,)))L w( '
FE b=M— ,
JZ( 0 Do Gl
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where ((-) is the statistical expectation computed over the
image support and L aké the orthogonal components of lag
in the spatial domain.

LLL 5HJLRQ RI

Dense area-based image registration techniques are typically
computationally expensive. An improvement over exhaustive
iterative registration involves identifying regions of interest
(ROI) which can be used reduce the cost associated with these
techniques. In [18], Chailloux develops a region of interest
detector for sonar images which uses a set of Gabor filters to
generate saliency maps that can be used to identify regions of
interest. They have also illustrated the difficulty in developing
a robust region of interest detector for sonar images. Sonar
images present challenges to region of interest detection for a
number of reasons discussed in section II. A brief analysis on
the process of sonar image generation quickly highlights the
fact that these images are highly variable in terms of distortion
and illumination changes. Chailloux also implies the fact that
it is definitely preferable to extract points of interest outside of
shadow regions since these regions could undergo dramatic
illumination changes as the AUV observes the same region of
seabed from differing perspectives. Additionally, for area
based registration techniques to be effective, a reference
window sampled from one image must contain sufficient
content such that it is uniquely distinguishable within the
image to be registered against. Zitova calls this the
“remarkableness” of the sampled window [9].

In our application of the log-polar transformation as a
registration technique we include a pre-processing step which
computes the variance over a sliding window. It is clear from
the resulting variance saliency map shown in Figure 5 that this
step is effective at highlighting regions that produce strong
echo. The reference and sensed saliency maps are then
partitioned into sub-windows. The indices of the maxima
within each sub-window are recorded. This step dramatically
reduces the search space for the registration algorithm. Instead
of performing an exhaustive search of the sensed image for a
strong match with a sampled window from the reference
image, we evaluate only the potential matches at the indices of
interest.

, QWHUHVW "HWHFWLRQ



Figure 5. Region of interest detection. From left to right: original, variance saliency map, original with interest points overlaid.

VI. RESULTS
L OXWXDO ,QIRUPDWLRQ

It has been determined that performing global registration
using a mutual information measure as described above is
prohibitively slow. It also suffers from the same difficulty as
normalized cross-correlation in that, if the image pairs do not
share enough unique intensity variation due to structure, then
registration is prone to error. A variation of this method might
firstly identify regions of interest and only evaluate the
registration of sampled windows around these ROIs. However,
the accuracy of the registration is decreased considerably with
a decrease in the number of samples available to construct the
joint histogram. We do not wish to discredit the use of mutual
information as a registration technique in general, but, in its
application to side-scan sonar images, which can be quite
homogeneous, and as a real-time solution, mutual information
has been found to perform quite poorly.

LL 3KDVH &RUUHODWLRQ

Phase-correlation has been found to be the most accurate
among the evaluated methods. This is based on the
observation that its maximum registration error, as shown in
Table II, is the lowest among the maxima of its counterparts
presented in this paper. The high-pass image preprocessing
steps used in our implementation places a greater dependence
on utilizing the structure within the images for registration.
This may be the reason why the registration error is lower
where more structural content is shared between the registered
images.

Figure 6. Matching keypoints using SIFT.

TABLE I
Registration Results Using Phase Correlation

Set A B C D E
WLPH 1.1 1.4 1.2 1.4 1.4

WSI 14 -45 -52 -140 -71
WS]| 196 -241 46 -152 -234
z 0.8 -10.4 -18.4 -28 -39.2

Hev 1.9 2.3 3.5 3.8 2.1

LLL 6FDOH ,QYDULDQW )HDWXUH 7UDQVI

It is shown in Table III that this method works remarkably
well even in the absence of significant structure within the
corresponding reference and sensed images. Additionally, the
execution time for SIFT is quite favorable for deployment in a
real-time context. Figure 6 is provided to illustrate the stability
and effectiveness of SIFT for a side-scan sonar image pair
which is lacking in structural content. This method can be
quite sensitive to keypoint mismatches wherever the total
number of extracted keypoints is low. However, as the number
of correct matches increases, through iterative refinement, it is

possible to improve the accuracy of the resulting
transformation parameters.
TABLE III
Registration Results Using SIFT
Set A B C D E
WLPH 1.7 1.4 1.6 1.7 1.3
WS]I 12.2 -43.4 -54.0 -137.5 -68.9
WS|[ 193.1 -238.2 45.4 -155.8 -229.3
z -3.1 -10.0 -20.8 -29.9 -40.1
Hpv 4.2 4.0 2.3 1.3 49

LY /RJ SRODUP 7UDBQRYIRWHFWLRQ

Here we have used a sample window size of 81x81 which
provides an angular resolution of approximately 4.4° without
utilizing sub-pixel interpolation. The sampled window is taken
centered on the most salient point in the sensed image.

Although we can identify salient features within the images
to be registered, this does not guarantee that the structure of
that feature will remain highly correlated with multiple
observations. As a result, dramatic registration errors can
occur. The absence of corresponding structure between the
images in set C has resulted in an orientation misregistration,
as shown in Table IV. However, overall this method has the




potential to produce accurate results at the cost of increased
execution time.

TABLE IV
Registration Results Using Log-Polar Transform
Set A B C D E

WLPH 47.4 46.6 47.6 47.4 47.3
WS] 16 -45.5 -73.2 -140.9 -71.5
WS]| 200 -238.7 17.3 -148.0 -236.1

z 0.0 -8.9 -173.3 -26.7 -40

Hev 0.8 3.7 90.2 6.3 14

VII. CONCLUSIONS

In this paper, we have discussed the performance of a
number of key image registration techniques as they apply to
side-scan sonar imagery. The results clearly demonstrate that
image registration can aid in the correction of inertial
navigation error or as a standalone navigation solution for
online deployment in an AUV. It has been determined that the
registration techniques based on SIFT and phase-correlation
provide the best performance among all of the evaluated
methods. In the future we will look at extending these methods
to handle a wider variety of sonar imagery.
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