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Abstract—We present a novel approach to the guidance of
an autonomous underwater vehicle (AUV) along a trained
route. The introduced system employs a topological route
representation based on storing a sequence of side-scan sonar
images captured along the route. When in following mode,
image registration techniques provide the vehicle with a real-
time estimate of the direction of its displacement relative
to the trained route. This simplified approach to navigation
sidesteps the problems inherent with maintaining a vehicle pose
estimate within a global reference system, thereby allowing the
vehicle to traverse a trained route without resorting to external
navigation aides (e.g. GPS). Simulation results are provided
which validate the proof of concept for our approach.

Keywords-AUV navigation; route following; qualitative nav-
igation; topological navigation

I. INTRODUCTION

The system proposed here provides the capability for an

autonomous underwater vehicle (AUV) to follow a previ-

ously learned route without external navigational aides. At

the core of the system is an algorithm for the registration

of side-scan sonar images, which has been described in

previous work [1]. The approach taken is to represent the

route as a sequence of nodes, each with an associated side-

scan sonar image which was collected during training. This

strategy is based on the notion of topological navigation

pioneered in mobile robotics [2] which has also been de-

scribed as qualitative navigation [3], [4]. The approach of

qualitative navigation is to represent the environment as

a set of connected places with mechanisms for travelling

between places. It is quite explicit that these places are not
represented in the same global coordinate system. These

ideas have led to considerable success in recent years in

allowing an outdoor mobile robot to autonomously follow a

trained route, despite changes in illumination and variable

terrain [4], [5]. To our knowledge, our work represents the

first attempt to apply a qualitative navigation approach to

the underwater domain.
In contrast to the qualitative navigation approach the cur-

rent practise of AUV navigation is heavily invested in esti-

mating the pose of the vehicle in a global coordinate system.

A host of sensors and inertial measurement technologies

support this goal. While on the surface, the AUV updates

its position from satellite-based positioning systems such as

GPS. During a dive the AUV relies on its Inertial Navigation

System (INS) to estimate its acceleration and integrates this

information to update its pose estimate. In the vicinity of

the seabed, a Doppler Velocity Log (DVL) can be used to

estimate the speed over ground, which allows for increased

precision in updating the vehicle’s pose. However, only

the satellite-based positioning systems provide an absolute

reference, and even this reference includes some error. The

INS and DVL can be used to update the position estimate,

but it is inevitable that it will drift from its true value.

Therefore AUVs must surface periodically. The frequency

of surfacing events hinge upon the accuracy of the INS. For

high-end INS systems a typical value for position accuracy

is 0.1% of distance travelled. Absolute position reference

can also be provided to a submerged AUV by an acoustic

positioning system, which may be ship-based or consist of

independent transponders.

We believe it is worthwhile pursuing other navigational

strategies that are less dependent upon global pose esti-

mation. Higher-end INS systems in particular can be very

expensive (in excess of $150,000). Acoustic positioning

systems are also expensive, have limited range, and require

some effort to install into the environment. Even if such

systems are available, one must consider how to recover the

AUV if they fail.

Another popular approach is to employ the technique of

Simultaneous Localization and Mapping (SLAM) to acquire

maps of the environment autonomously from sensor data.

The application of SLAM to the underwater domain has a

long history and is an area of much recent activity [6], [7].

However, the computational cost of SLAM techniques are

significant and it remains unclear whether they can scale to

map long routes with few self-intersections, such as have

been undertaken underneath the arctic ice shelf [8].

The method described here has a number of potential ap-

plications. It could be used as an emergency return strategy

for a deployed AUV. To allow for this return the vehicle

would need to capture side-scan sonar images along its route

during normal operations. If a fault or some other emergency

condition ensued, it could traverse its course in reverse by
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homing in sequence from image-to-image all the way back to

the launch point. Another broad area of application would be

in conducting repetitive surveys of the same area of seabed—

a common task in security operations and environmental

monitoring. Yet another significant application area is under-

ice operations where it is simply not possible for the vehicle

to surface to obtain a satellite position fix. There has been

considerable interest in running AUVs underneath the arctic

ice shelf, in particular for the purposes of establishing

territorial claims under the United Nations Convention on

the Law of the Sea [8].

In our system, the AUV operates in either traning or

deployment mode. In training mode, it forms images of the

seabed from side-scan sonar data and stores these with a

given frequency (see figure 1). In deployment mode the AUV

is configured to either follow the trained route in the same

direction it was collected (e.g. for surveying applications)

or in the opposite direction (e.g. emergency return). We

make the assumption that the AUV starts its deployment

somewhere along the trained route. It will then begin a

continous process of localizing itself to the nearest node

along the training route and will adjust its trajectory to

minimize displacement from the route and travel along it

in the configured direction. In this paper we present initial

results that validate the proof-of-concept for this system.

The results are based on side-scan sonar images captured

from a towed sensor1. We are currently in the process

of installing a side-scan sonar and other sensors onboard

Memorial University’s Explorer-class AUV2.

In the next section we describe our qualitative navigation

system for autonomous route following. We then present

results on towed side-scan data in section III. Finally,

some concluding remarks and directions for future work are

presented in section IV

II. SYSTEM DESIGN

The design of the overall qualitative navigation system is

illustrated in Figure 2. The flow of information within the

system is as follows:

(A) Raw scanlines are passed from the side-scan sonar to

the image generation process.

(B) Heading and speed data are used by the image genera-

tion unit in the computation of scanline orientation and

position.

(C) A generated side-scan image is forwarded on for the

purposes of image registration and localization.

(D) The localization unit uses the results from the registra-

tion of the current image with those in the database to

aid in the process of localization.

(E) Localization compares the current (sensed) image with

the database images obtained during the training phase.

1Data kindly provided by EdgeTech, Wareham, MA, USA.
2Manufactured by International Submarine Engineering Ltd., Port Co-

quitlam, BC, Canada.

Figure 1. The representation of a topological route through the use of
side-scan sonar images.

Figure 2. A block diagram representation of the overall qualitative
navigation system.

(F) The transformation parameters resulting from the image

registration and localization processes are passed along

to the AUV control module.

The overall outputs of the system are transformation

parameters which provide an estimate of the vehicle’s

displacement and orientation relative to the route. These

parameters can then be used by an AUV control unit

in deciding how to set a new course. Perhaps the most

straightforward approach would be to use the transformation

parameters to compute a new waypoint. This approach

is possible because the Explorer AUV’s control software

has the capability to set new waypoints on-the-fly and

home towards them autonomously. Although an important

consideration for practical implementation, we do not yet

have the means to evaluate different control strategies on
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the AUV. Therefore the investigation of control strategies is

left for future work and we focus instead on the problem of

computing the relative transform between the AUV and the

route.

A. Side-scan Image Generation

A side-scan sonar emits acoustic pings and records the

time and intensity of response over an integration window.

The result is that each ping samples the seabed along a

line orthogonal to the vehicle’s direction of travel. The data

recorded from each ping is known as a scanline. The area

sampled increases in size with distance from the sensor, and

there are a number of other factors and corrections that must

be accounted for when analyzing side-scan sonar data [9].

Commercial software packages are available to generate a

two-dimensional side-scan image by appropriately combin-

ing the one-dimensional scanlines generated from each ping.

However, we require this process to be executed in real-time

without user intervention onboard the AUV.

There is insufficient space to describe the complete side-

scan image generation process here. The core of the pro-

cess is to combine into one raster image the scanlines

collected from each ping, while also applying the appropriate

corrections (e.g. correcting for attenuation of the signal

with distance from the sensor). Writing these scanlines into

the appropriate positions of the image requires information

about the relative change in the AUV’s pose. In our case,

we generate image tiles that combine a constant number of

scanlines into one image. Any deviations of the vehicle from

a straight course will result in data from multiple scanlines

being written to the same raster location. Sophisticated

interpolation schemes are required to combine this data

appropriately. Some examples of the image tiles generated

by this process can be seen in figures 6 and 8.

B. Image Registration

The image registration procedure is based on extracting

SIFT keypoints [10] and utilizing RANSAC [11] to arrive at

a subset of the keypoints which are used to estimate a two-

dimensional rigid body transform between the sensed and

reference images. We previously compared this approach

with other image registration techniques including mutual

information, phase correlation, and a method based on the

correlation between log-polar transformed images [1]. The

performance of SIFT and phase correlation were similar.

We have adopted SIFT over phase correlation so that the

sonar images themselves can be discarded once keypoints

have been extracted. The keypoints typically consume less

storage space than the images thereby mitigating storage

space concerns as a constraint on the range of our technique.

We make the assumption that the AUV will operate

at constant depth. The desired depth value can be easily

stored as a characteristic of the route. This assumption

simplifies the geometry and allows us to consider only two-

dimensional transforms in the image registration process.

C. Localization

The localization process ties the entire system together. It

provides an estimate of the vehicle’s location along the route

and attempts to maintain that estimate even when the vehicle

becomes temporarily lost. This is accomplished through the

use of recursive Bayesian estimation [12]. The vehicle is

assumed to be travelling in the configured direction along the

route (either in the same direction as in training or opposite).

1) Bayes Filter: Recursive Bayesian estimation is a pro-

cess for estimating the probability distribution of a system

over its state-space. In our case, the system is the AUV

and its state-space corresponds to topological position along

the trained route. A single position is represented simply as

a node index. Bayes filter allows the AUV to continuously

update its state estimate based on the most recently acquired

side-scan image. The filter consists of two parts: prediction

and innovation. A motion model is used in the prediction

step to model the vehicle’s recent motion. In the innovation

step the AUV will refine the current belief estimate accord-

ing to sensory input.

The granularity of the position estimate is determined by

the number of nodes along the trained route. It is possible

for a sensed image to be partially contained within two

adjacent reference images, in which case the probability

mass is expected to be distributed among them in the

measurement function. The Bayesian network shown in

Figure 3 represents the process of updating the vehicle’s

unknown position wk at instant k based on the observation

zk and motion estimate rk. The vehicle’s belief that it is at

Figure 3. An example of a general Bayesian network for vehicle
localization.

some position wk is denoted by a belief function:

bel(wk) = p(wk|z1:k, r1:k), (1)

where the subscript 1 : k represents all current and past

observations and motion updates. The belief function bel
is initialized to a uniform distribution which represents

the vehicle being completely uncertain with respect to its
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position. Upon applying the motion model to the previous

belief function the prediction function is then obtained:

bel(wk) =
∑

wk−1

p(wk|rk,wk−1)bel(wk−1) (2)

where p(wk|rk,wk−1) is the probability that the vehicle

arrived at position wk given that it was previously at position

wk−1 and underwent motion rk. The prediction function is

an intermediate belief about the vehicle’s position without

taking the current observation into account. The innovation

step allows the prediction function to be refined according

to the current observation and the prediction function:

bel(wk) = μp(zk|wk)bel(wk), (3)

where p(zk|wk) expresses the probability that the most

current observation is consistent with wk, also known as the

measurement model, and μ is simply a normalizing constant

which constrains the sum of the probability mass under the

resulting belief function to be equal to one:

μ =
1

∑
wk

p(zk|wk)bel(wk)
(4)

The process described here is reiterated each time a new

observation is made. The probability mass within the belief

function will eventually converge on the vehicle’s true

position as long as the vehicle remains in close proximity

to the route and some sequence of distinguishing features is

observed. The strongest estimate of the vehicle’s position

is used to determine position. Image registration is then

applied to relate the current image to the corresponding

training image. The resulting transformation parameters will

be used to guide the vehicle back onto the route. If there is

no sufficiently strong position estimate, a default navigation

strategy may be assumed. Currently, we are accepting as a

default strategy that if the vehicle does not have a strong

estimate of its position it will continue in the direction

suggested by its most recent estimate.

2) Motion Model: For our purposes a very simple motion

model is used. It is derived from the assumption that the

vehicle is indeed travelling along the route at constant speed

in the configured direction. Under this assumption, rk in

equations 1 and 2 can be ignored and the motion model is

reduced to p(wk|wk−1). We are anticipating that the vehicle

will traverse from node to node in linear succession along the

route and that there may only be very minor deviations from

this pattern. As such, the current definition of the motion

model is constructed similar to the one proposed in [13]:

p(wk|wk−1) =
1

βw
e−dist(wk−1,wk)/σ

2w (5)

where dist(w1,w2) corresponds to a measurement of the

distance between two places which is approximated by con-

sidering the number of place transitions between the nodes

w1 and w2 on the topological map, and σ2w is the measured

variance of the distances between adjacent nodes determined

prior to deployment. β is a normalization constant.

This motion model is limited in that it does not take the

actual movements of the vehicle into consideration. In the

future, it will be extended to accept input from the AUV’s

INS so that we can compare the actual distance travelled

with stored relative movements between node locations.

3) Measurement Model: We have devised a measurement

model which utilizes the same similarity metric used by the

SIFT/RANSAC method for image registration. This registra-

tion method measures the similarity between a transformed

sensed image and a reference image by counting the number

of inliers resulting from the transformation. Those keypoints

which are in agreement with the transformation parameters

are called inliers. Let the similarity function be denoted by

Nin = S(IS , IR), (6)

where the function returns the number of inliers Nin found

when registering sensed image IS to reference image IR.

The database D of reference images along the route is as

follows:

D = {IR1, IR2, IR3, ...} . (7)

We can compute a set of similarity functions over D

Finliers = {S(IS , IR1), S(IS , IR2), ...} (8)

The measurement model, which is a probability mass func-

tion, is approximated by determining the relative frequency

of each result within the set of similarity results:

p(zk|wk) =
Finliers∑

i

Finliers(i)
(9)

III. RESULTS

A. Experimental Setup

At the time when these results were developed the MUN

Explorer AUV was not yet outfitted with the side-scan

sonar required for this work. We therefore utilized data

collected by a towed side-scan sonar collected off the port

of Southhampton, UK. The data consists of two partially

overlapping track lines, as shown in Figure 4, corresponding

to two independent runs over a particular region of seabed.

GPS information is included as meta-data. The longer track

line in Figure 4 is taken as the simulated training route for

the system. A total of 15 image tiles, each consisting of 500

scanlines, were obtained along this route. The shorter track

(shown in red) is taken as the simulated deployment route.

A total of 8 images were obtained along the deployment

route. The direction of travel for both routes is shown in the

figure.

The objective of the experiments described here are to

validate our localization strategy, the ability of our image
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(a) Overhead view from Google Maps

(b) Labelled routes

Figure 4. Two routes used for system validation. Data obtained off of
the coast of Southampton, UK. The longer track is considered the training
route. The shorter red track is the deployment, or testing route.

registration procedure to determine the correct local trans-

form, and finally to combine localization and local transform

to determine on which side of the route the vehicle lies.

B. Localization

We begin by considering the measurement model. Figure

5 provides a graphical representation of the probabilities of

obtaining the given sensed image along each trained position

of the route. As mentioned in section II-C3 the measurement

model is based on the registration strength of the current

sensed image with each of the trained images. Most of the

probability mass is focused along a diagonal which starts at

reference image 6. As can be observed from Figure 4, the

initial position of the vehicle is between two reference nodes;

5 and 6. For sensed positions 1-6, the peak of the probability

function shifts along as expected. However, a dropoff occurs

at sensed image 6 and the measurement model (on its own)

incorrectly predicts position for sensed images 6-8. This is

due to the fact that the swath width is fairly narrow and

the vehicle is increasingly deviating from the training route,

so overlapping coverage is limited and devoid of content

that would otherwise produce a strong registration. Figure

6 shows sensed image 6 and reference image 11, a pair for

which our method fails to find sufficient correspondences.

Figure 5. Measurement probability function p(zk|wk) dependent on
sensed image input.

Figure 6. Sensed image 6 (left) and training image 11 (right) result in a
weak registration. The circled regions are manually identified commonali-
ties.

The belief function, which incorporates both motion and

measurement models, can be evaluated similarly. Figure 7

shows a graphical representation of the belief function as
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it evolves for each new sensed image from 1-8. For sensed

images 1-5 the peak in probability tracks along correctly.

For sensed images 6-8 the inaccuracies described above

are inherited by the belief function and a clear drop in

peak intensity is observed. However, the peak in the belief

function is closer to the true value than it was for the

measurement model alone. In fact, the peak in the belief

function is still coincident with the correct location for

images 6 and 7 (reference images 11 and 12). Only for

sensed image 8 is the peak located incorrectly (at reference

image 13 as opposed to 14). To model the uncertainty of

the vehicle, we have calculated the entropy in the belief

function each time a new sensed image is obtained. These

entropy values are given in table I. Initially, uncertainty is

high because the belief function was initialized to a uniform

distribution which results in a direct copying of probability

from the measurement model. The uncertainty then trends

downwards until we hit the difficult patch from sensed

images 6-8.

Figure 7. Belief function bel(wk) dependent on sensed image input.

Table I
LOCATION ESTIMATE OBTAINED FROM THE BELIEF FUNCTION.

Sensed Image Location Estimate (Training Node) Entropy
1 6 1.97
2 7 1.52
3 8 1.40
4 9 1.47
5 10 1.55
6 11 1.94
7 12 1.92
8 14 1.82

We can see that, through the use of the Bayes filter for lo-

calization, along with the proposed motion and measurement

models, our system has the ability to maintain an accurate

estimate of its location even while the measurement model

returns a weak estimate. We believe the difficulty that occurs

for sensed images 6-8 is due to the increasing deviation

of the vehicle from its trained route. This decreases the

overlapping area between the images. Also, the generally

homogeneous texture in this area of seabed makes localiza-

tion difficult (see figure 6).

C. Local Transform

Image pairs with sufficient overlapping content produce

excellent registration results. Figure 8 provides an example

illustrating how the coordinate system of reference image

6 relates to sensed image 1. Figure 6 provides an example

where the correct transformation between images could not

be found.

Figure 8. The registration of sensed image 1 with reference image 6.

Figure 9 shows the local transformations computed along

the route, as well as providing a graphical depiction of the

entropies given in table I. It can be seen that for sensed

images 1-5 the transforms are all approximately correct,

but that for images 6-8 they are incorrect. It is important

to note that the arrows depicted in this figure show the

spatial relationships to the most similar positions along the

training route and should not be taken as direct instructions

for piloting the AUV.

D. Route Side Determination

By combining localization with image registration we can

determine on which side of the route the vehicle lies. In

figure 10 the translation vector from the local transform

is projected onto the vehicle’s heading vector and then

normalized to constant length. For images 1-6 these vectors
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point orthogonally in the direction of the route, indicating

which steering direction should be chosen. However, for

positions 7 and 8 the estimate is incorrect.

(a)

(b) Close ups for sensed images 1-3

Figure 9. The local transformations computed along the route. Arrows
indicate the relative direction of translation as a result of image registration.
Circle radius is proportional to the entropies provided in table I, the larger
the radius the more certain the vehicle is of its location. Circle locations
correspond to the true locations of the vehicle.

E. Discussion

For 7 out of 8 positions along the route, our local-

ization system was able to track its position, and for 6

out of 8 positions it was able to make the correct route-

side determination. For the positions where route-side was

estimated incorrectly, we saw a high entropy value indicating

uncertainty. Therefore, we have some confidence that the

system described here could be developed further to offer

route guidance where possible, but could also be designed

to maintain the current course (or switch to some other

strategy) when localization uncertainty reaches a high level.

These simulation results, however preliminary, show that

underwater navigation by an AUV is possible even in the

Figure 10. Indication of the location of the route relative to the vehicle’s
current heading.

absence of external localization aides or by referring to its

location within a global frame of reference.

IV. CONCLUSIONS

Our intent has been to produce a system for underwater

navigation which does not rely on global pose estimation.

Current strategies for AUV navigation rely on external

navigation aides such as GPS which may require the vehicle

to surface periodically, therefore limiting the time spent

underwater. The system proposed here is suitable for routine

surveying or monitoring applications where the vehicle is re-

quired to follow a trained route precisely and for an extended

period. Instead of attempting to maintain an estimate of the

vehicle’s location in a global reference frame, the vehicle

needs only to determine its position along the route and to

determine on which side of the route it lies.

Simulation results show that our system does indeed

provide the vehicle with an estimate of its location and a

navigation vector indicative of the course correction required

to steer the vehicle toward the route.

It is clear, however that much work remains to be done.

We feel that the restriction to constant-depth route following

can be relaxed, especially considering the availability of

scale-invariant image registration techniques. In this paper

we adopted SIFT features for both image registration and

similarity measurement. However, we intend to investigate

other scale-space detectors which have been reported to

improve upon SIFT’s accuracy and computational cost [14],

[15]. We also wish to incorporate a motion model that
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accounts more accurately for the vehicle’s recent trajectory.

More investigation is required into a control strategy that

would bring a displaced vehicle back to the route in an

efficient manner (for example, by selecting a later point

along the route as a waypoint). We observed some degree

of ambiguity in the measurement model, which may be

addressed by other image matching techniques such as his-

togram matching and textural analysis. Our most immediate

challenge is to deploy and test this system on a working

AUV.
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