Automated Design for Playability in Computer Game Agents

Scott Watson, Wolfgang Banzhaf and Andrew Vardy

Abstract—This paper explores whether a novel approach to the creation of agent controllers has potential to overcome some of the drawbacks that have prevented novel controller architectures from being widely implemented. This is done by using an evolutionary algorithm to generate finite state machine controllers for agents in a simple role playing game. The concept of minimally playable games is introduced to serve as the basis of a method of evaluating the fitness of a game’s agent controllers.

I. INTRODUCTION

Considerable research has been carried out into how to make better control architectures for agents in computer games [1], [2], [3], [4], [5], [6], [7]. Some of these architectures are very sophisticated and boast impressive capabilities. Despite these achievements, very little of this research has made its way into commercial computer games [1], [5], [8], [9]. This paper seeks to address some similar goals from a perspective on which relatively little work has been done - improving the process of how existing agent controllers are made rather than improving the agent controllers themselves.

The most fundamental requirement of a set of controllers to control the NPCs in a game is that the controllers will lead to a game that is possible for the player to complete. We call a game which it is possible to complete minimally playable. A simple game specification language is used to establish whether an evolutionary algorithm can generate controllers for agents in such a way that desirable gameplay properties are obtained. The contributions made by this paper are the introduction of the concept of minimally playable games and the description and preliminary validation of the concept of evolving agent controllers that satisfy minimal playability.

II. BACKGROUND

A. Computer Role Playing Games

Role Playing Games (RPGs) are a subset of computer games that place emphasis on the development of the character controlled by the player, their importance in the game world and the influence they have on the world. These games often place a lot of importance on carefully crafted storylines that the player’s character plays a central role in. The game worlds in RPGs can be extremely large in scope and complexity. The player often has a great deal of freedom to explore the world in whatever manner they see fit. RPG game worlds can be inhabited by thousands of non player characters (NPCs).

B. Agents in Role Playing Games

Typically a great deal of the game experience in RPGs is based on the player’s interaction with NPCs. This can vary from very simple interactions based on fighting and defeating a character to more complicated interactions such as conversation, trade or negotiation. In many cases, the social landscape of the game environment influences the interaction. For instance a friendly agent will behave differently towards the player than an antagonistic agent. Because of the variety of interactions that are potentially required to be handled by the agent controllers in RPGs, and the scope for future experimentation that this offers, RPGs were chosen as the genre to focus on.

C. Finite State Machines

Finite State Machines (FSMs) are models of computation defined by a finite list of states and a finite list of transition rules. Each transition rule controls which state the machine moves to for a given input. FSMs can be applied in a large variety of domains. Their strengths include conceptual simplicity, fast execution speeds, and ease of implementation.

Finite State Machines are used extensively in computer games [3][6][8][10][11][12]. FSMs can achieve good results but are rigid and cannot deal with situations not explicitly prescribed for by the developer. Human players are becoming adept at predicting behaviour by learning the rules of the FSM [8]. FSMs are easy to test, modify and customize [13]. FSMs were used in Doom and Quake, among many others.

Efforts have been made to augment the classic FSM to increase its functionality. Fuzzy State Machines (FuSMs) have come into fashion to give less binary behaviours [12][13]. Fuzzy logic allows unpredictable behaviours to be generated based on traits of the agents which are modeled as decision thresholds. FuSMs were used in Unreal, S.W.A.T.2 and Civilization: Call to Power [13]. Gruenwoldt et al. attempted to use a dynamic relationship graph to modulate basic FSM behaviour [14][15][16].

D. Related Work

To the best of our knowledge there is no related work pertaining to the evolution of FSMs to control game agents. Certainly there is no mention of it in Fairclough et al.’s 2001 discussion of research directions for AI in computer games [8], Johnson and Wile’s 2001 survey of AI in computer games [13], Lucas’s 2006 overview of evolutionary computation in games [9], Togelius et al.’s 2011 survey of procedural content generation [17], Hocine and Gouaich’s 2011 survey of agent
programming in serious games [10] or Hendrikx et al’s 2011 survey of procedural content generation [18].

There are however a number of works that have analogous approaches. One interesting example among many is the work of Spronck et al. that seeks to recombine low level behaviour units into progressively more effective controllers in an iterative fashion [19].

E. Motivation

Creating, testing and maintaining finite state machines are time intensive processes. Being able to automate the creation of these machines will be advantageous for game developers in terms of the labour saved and accelerated development time [6], [10], [17], [20]. If the creation of a FSM for an agent is not associated with a significant cost in terms of labour, it may become feasible to handle larger populations of agents and use fewer duplicate controllers among the agent populations of a game. It is also quite feasible that larger, more complicated finite state machines could be viably produced, potentially leading to superior results in agent behaviour [10], [17].

III. CONTROLLER GENERATION MODEL

A. System Overview

The high level view of the system and its operation is given in figure 1. A developer provides an input and output specification and an evolutionary algorithm uses these to produce a set of controllers to be used by the agents in the game.

To check if a controller set is viable, it is sufficient to check the actions the player can carry out in order to achieve the victory objective. A sequence of such actions constitutes a path to victory. A controller set with at least one path is viable. A controller set may have many paths. The path(s) associated with a controller set can be used to compute certain attributes of the game-play experience a player would get by playing a game formed using this controller set. The precise nature of the attributes that could be calculated depends on the description of the game itself. Examples might include the number of actions the player must carry out to satisfy the victory objective, the number of agents the player must interact with to satisfy the victory objective or the types of actions that the player must carry out to satisfy the victory objective.

B. Agents

Each agent belongs to a social group. The groups are respectively friendly, neutral and hostile towards the player. Each agent has a set of items and a set of facts when the game starts. These sets may be empty. Items are unique and can only be held by one agent at a time. Facts can be duplicated and can be held by many agents at a time.

The agents in the game are always in one of the declared states. The agents only change states in response to actions by the player. Their transitions between states are produced by the generation process. The inputs which trigger transition table lookup are of the form <currentAgentState, playerAction, socialRelation> where currentAgentState is the state the agent is currently in, playerAction is the action the player carried out that the agent is reacting to and socialRelation is the relation between the player and the social group the agent belongs to. The state an agent is in controls the outcome of any actions the player carries out involving that agent. Figure 2 shows a representative controller for a limited set of states and actions.

C. Input Specification

- List of Items - A list of items present in the game world is specified by the ID number of each item.
- List of Facts - A list of ‘facts’ present in the game world is specified by the ID number of each fact. Facts in this scenario are highly abstract, effectively serving as boolean flags to enable certain things to happen such as
being able to see an invisible agent or being able to use a certain action. Facts differ from items in that facts can be duplicated. Unlike items, facts can also be ‘lost’ if all agents possessing the fact are killed. Finally, the actions that can lead to the player gaining a fact are different from those that lead to the player gaining an item.

- List of Agents: A list of agents present in the game specified by the ID number, social group, facts and items of each agent. These agents can be in one of three social groups which are respectively friendly, neutral, and hostile to the player. This relation forms a passive input to state transitions.

- Item Mappings: A mapping of items to the agents that have possession of them, specified by their respective ID numbers.

- Fact Mappings: A mapping of facts to the agents that have possession of them, specified by their respective ID numbers.

- Trade Mappings: A mapping of items to items that should be accepted in exchange as part of the trade action, specified by their respective ID numbers. This mapping is consulted when evaluating valid chains of actions to achieve victory. If a trade action is evaluated as part of a search for how to acquire an item a, a recursive search for how to acquire the item b specified in the mapping such that $a \rightarrow b$ must be performed, and those actions prepended to the action chain.

- Action Descriptions: A list of actions available to the player. Each action is represented by a name, a set of states an agent can be in to initiate the action, a set of states an agent can be in if the action is successful, a flag to indicate whether the action can result in the acquisition of an item, a flag to indicate whether the action can result in the acquisition of a fact, the (possibly null) ID of an item required to perform the action and the (possibly null) ID of an fact required to perform the action.

- States: A list of states that agents can be in.

- Victory Objective: The ‘end goal’ of the game is specified by the type of objective (obtain item or fact) and the ID number of the item or fact that is to be obtained.

D. Output Constraints

Output refers to the game created by using a given set of generated controllers. Constraints on this output are therefore constraints on the game-play produced. This allows the fitness function to direct the search towards specific game-play objectives. The developer has the freedom to specify as many or as few constraints as they are interested in. There is a trade-off between the expressiveness and conciseness of the specification format.

1) Required Transitions:
A list of state transitions required to be generated for the agent controllers. These are specified by the input tuple of $(\text{currentAgentState}, \text{playerAction}, \text{socialRelation})$.

For example, $(\text{idle}, \text{attack}, \text{hostile})$ indicates that a transition must be generated to handle the event when a player attacks an agent that is hostile to them and is currently in the idle state.

If no transitions are given, transitions will be generated for all transitions possible from the lists of states and actions. Having the ability to restrict the transitions generated is useful if some transitions are going to be manually created or if certain transitions will be shared across multiple agents. For example if all agents in a certain social group should respond to the player attacking them by running away, that transition need not be generated. This reduces the size of the search space.

2) Valid Transition Mappings:
These mappings define valid and invalid transitions by specifying a set of valid states that can be transitioned to from a given input tuple of the form $(\text{currentAgentState}, \text{playerAction}, \text{socialRelation})$. This mapping can be as exhaustive or sparse as desired. If no mapping exists for a required transition, an implicit mapping to the set of all states is used. This allows the developer to maintain plausibility by forbidding undesirable transitions. An example of an undesirable transition might be an agent moving from a ‘dead’ state to any other state.

For example, $(\text{idle}, \text{attack}, \text{hostile}) \rightarrow (\text{flee}, \text{dead}, \text{attack})$ indicates that if the player attacks an agent that is hostile to them and is currently in the idle state, that agent must change its state to one of the dead, flee, or attack states. If a transition is not mapped, it indicates the agent can change to any state.

3) Desired Actions:
A set of actions that the developer wishes the player to use. There is at least one sequence of actions that leads to satisfaction of the victory objective for every action in the desired action set.

E. Solution Encoding

If the transition table is considered to be a mapping from input tuple of the form $(\text{currentAgentState}, \text{playerAction}, \text{socialRelation})$ to output state newState, the solution is encoded as the newState component of each mapping designated as required in the input specification.

States are mapped to integers and the solution is represented as a list of integers.

For example, given:

- A set of required transitions
 - $(\text{idle}, \text{attack}, \text{hostile})$
 - $(\text{idle}, \text{question}, \text{hostile})$
 - $(\text{idle}, \text{move}, \text{hostile})$

- A mapping of valid transitions
 - $(\text{idle}, \text{attack}, \text{hostile}) \rightarrow (\text{flee}, \text{dead}, \text{attack})$
 - $(\text{idle}, \text{question}, \text{hostile}) \rightarrow (\text{flee}, \text{answer}, \text{lie}, \text{abstain}, \text{attack})$

Note that there is no entry in the mapping of valid transitions that corresponds to the entry $(\text{idle}, \text{move}, \text{hostile})$ in the set of required transitions. This indicates that a transition
to any state is acceptable for this input. A solution would conceptually be modeled as shown in figure 3.

<table>
<thead>
<tr>
<th>Current State</th>
<th>Player Action</th>
<th>Social Relation</th>
<th>New State (Integer representation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle</td>
<td>Attack</td>
<td>Hostile</td>
<td>Doo (10)</td>
</tr>
<tr>
<td>Idle</td>
<td>Question</td>
<td>Hostile</td>
<td>Answer (5)</td>
</tr>
<tr>
<td>Idle</td>
<td>Move</td>
<td>Hostile</td>
<td>Free (1)</td>
</tr>
</tbody>
</table>

Fig. 3. Example of agent controller for a limited set of states and actions

This would be encoded as: 10, 5, 1

F. Evolutionary Algorithm

The evolutionary algorithm used to generate the agent controllers is as follows:

1) Initialize a population \(P \) of \(N \) candidate solutions. For each agent, a state is randomly selected from the set of valid states mapped to the input tuple of each required transition.
2) Evaluate the fitness of each individual \(S \) in \(P \). If any solution \(S \) has a fitness of 0, return \(S \) and terminate.
3) Select a population \(P_P \) of \(N_P \) ‘parent’ solutions using binary tournament selection with tournament size \(K_P \).
4) Create a population \(P_O \) of \(N_O \) ‘offspring’ solutions by randomly selecting two ‘parent’ solutions \(P_1 \) and \(P_2 \) with replacement from \(P_P \) and combining them to create a solution \(O \).
5) Mutate each solution \(S_O \) in \(P_O \).
6) Evaluate the fitness of each individual \(S_O \) in \(P_O \). If any solution \(S_O \) has a fitness of 0, return \(S_O \) and terminate.
7) Select a population \(P_N \) of \(N_N \) ‘survivor’ solutions using binary tournament selection on \(P_P \cup P_O \) with tournament size \(K_N \).
8) Set \(P = P_N \).
9) Go to 2.

In this experiment the following parameters were used:

- \(N = 20 \)
- \(N_P = 20 \)
- \(K_P = 10 \)
- \(N_O = 20 \)
- \(K_N = 10 \)

1) Recombination:

Given two parent solutions \(P_1 \) and \(P_2 \), a child solution \(C \) is generated by recombination as follows:

1) Create \(C \) a solution with the same number of agents \(N_A \) and states \(N_S \) as \(P_1 \) and \(P_2 \).
2) For each agent \(A \)
 a) For each state \(s \)
 i) \(C.A.s = P_1.A.s \) with 50% probability and \(C.A.s = P_2.A.s \) with 50% probability.

2) Mutation:

Each state of each agent of each candidate solution is mutated with mutation rate \(MR \). Mutation randomly selects a state from the set of valid states mapped to the input tuple.

In this experiment \(MR = 2\% \).

G. Fitness Function

A minimisation fitness function is employed. Solutions are evaluated by attempting to find all chains of actions that will lead to the completion of the specified victory objective that are possible under the agent configuration represented by the solution. Each distinct chain represents a different way of winning the game. It is desirable to obtain all such chains so that properties of the game can be inferred. For example, if all valid chains are known and in each chain a certain action is used, that action will clearly be used in the game. Alternatively if no chain ever features an action involving a particular agent, it can be seen that the agent is not utilised in the game. Knowing these facts helps evaluate the quality of the game produced by using a candidate solution as the controllers in the game and hence the quality of the candidate solution itself.

Valid chains of actions are determined by searching backwards from the victory objective in a depth-first manner. Objectives can either be to acquire a fact, acquire an item or attain a state. A conceptual illustration of how this process works for objectives to acquire an item is shown in Figure 4. Objectives for changing an agent’s state or learning a fact are handled in a very similar fashion, the only difference is to check whether an action can lead to the desired result in each case. Starting from a condition required for victory, actions are checked to see if they can achieve the objective. Then any prerequisites necessary to carry out the action are checked by recursively making these pre-requisites into objectives and checking them. A detailed listing of the algorithms is included in Section IX.

Once all the valid chains of actions have been identified, the properties of the chains are evaluated and penalties applied as appropriate. Thus, an optimal solution will score 0.

H. Example

To illustrate how this process works, consider the following scenario. For the sake of brevity, only a subset of the full specification has been shown.

- Victory objective is to obtain the item with \(I_{ID} = 1 \)
- Agent A is neutral towards the player
- Agent A has possession of item \(I_{ID} = 1 \)
- Agent A has transitions \(\langle \text{idle}, \text{offerTrade}, \text{neutral} \rangle \rightarrow \text{acceptTrade} \)
 \(\langle \text{idle}, \text{attack}, \text{neutral} \rangle \rightarrow \text{dead} \) (among others)
- Agent B is neutral towards the player
- Agent B has possession of item \(I_{ID} = 2 \)
- Agent B has transitions \(\langle \text{idle,attack,neutral} \rangle \rightarrow \text{dead} \) (among others)
The player can attack, intimidate, or trade with agents. The list of valid chains of actions to achieve victory would be found as follows:

- Agent A (ID=2) has item O(ID=1)
 - Action attack can result in possession of items
 * A has a transition that can be satisfied by attack
 - $L_{States} = \{\}$
 - $L_{Facts} = \{\}$
 - $L_{Items} = \{\}$
 - $L_{Joins} = \{\{\text{attack}\}\}$
 - $L_{Chains} = \{\{\text{attack}\}\}$
 - Action intimidate cannot result in possession of items
 - Action trade can result in possession of items
 * A has a state transition that can be satisfied by trade
 - $L_{States} = \{\}$
 - $L_{Facts} = \{\}$
 - $L_{Items} = \{\}$
 - $L_{Joins} = \{\{\text{attack, trade}\}\}$
 - $L_{Chains} = \{\{\text{attack, trade}\}\}$

Hence the valid chains of actions to victory are:
1) Attack agent A.
2) Attack agent B. Trade item 2 with agent A for item 1.

IV. EXPERIMENT
A. Game Scenario
A simple experiment was devised as a first step in demonstrating the viability of the concept. In the experimental scenario, an ‘evil wizard’ agent Z has possession of a magic sword. The player’s victory objective is to acquire possession of the magic sword. The FSM controlling agent Z is fixed in advance so that the only way to acquire the magic sword item is to attack and defeat Z. Initially the player cannot see Z. The player must obtain the knowledge of how to see Z and also obtain an item that will allow the player to defeat Z. Agents are created that possess the knowledge of how to see Z, a ‘Crossbow’, the item required to defeat Z and an item that can traded for the ‘Crossbow’. In this example, a viable controller set is any set that allows the player to obtain the knowledge of how to see Z and the item required to defeat Z. Desirable properties are for every action the player can perform to appear on at least one path and for every agent to be interacted with in at least one path.

B. Input Specification
- List of Items -
 The items used in the experiment are listed in Table I.

<table>
<thead>
<tr>
<th>Item ID</th>
<th>Item Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Magic Sword</td>
</tr>
<tr>
<td>2</td>
<td>Crossbow</td>
</tr>
<tr>
<td>3</td>
<td>Gold</td>
</tr>
<tr>
<td>4</td>
<td>Invisibility Cloak</td>
</tr>
</tbody>
</table>

- List of Facts -
 The items used in the experiment are listed in Table II.

<table>
<thead>
<tr>
<th>Fact ID</th>
<th>Fact Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Z’s location</td>
</tr>
<tr>
<td>2</td>
<td>How to spot Gold</td>
</tr>
</tbody>
</table>

- List of Agents -
 The items used in the experiment are listed in Table III.

<table>
<thead>
<tr>
<th>Agent ID</th>
<th>Fact</th>
<th>Item</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
<td>Magic Sword</td>
<td>Z, The Evil Wizard</td>
</tr>
<tr>
<td>2</td>
<td>Z’s location</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>N/A</td>
<td>Crossbow</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>N/A</td>
<td>Gold</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>How to spot gold</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- Item Mappings - This mapping can be observed in Table III.
- Fact Mappings - This mapping can be observed in Table III.
- Trade Mappings -
 The items that agents in the experiment will accept in exchange for items they hold are listed in Table IV.
• Action Descriptions -
 The actions the player can carry out in the experiment are described in Table V.

<table>
<thead>
<tr>
<th>Action</th>
<th>Valid Start States</th>
<th>Valid Post States</th>
<th>Gains Fact</th>
<th>Gains Item</th>
<th>Requires Fact/Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attack</td>
<td>Idle, Fight, Flee</td>
<td>Dead, Slain</td>
<td>No</td>
<td>Yes</td>
<td>-1/-1</td>
</tr>
<tr>
<td>Ask</td>
<td>Idle, Fight, Flee</td>
<td>Answer</td>
<td>Yes</td>
<td>No</td>
<td>-1/-1</td>
</tr>
<tr>
<td>Trade</td>
<td>Idle, Accept</td>
<td>Trade</td>
<td>No</td>
<td>Yes</td>
<td>-1/-1</td>
</tr>
<tr>
<td>Intimidate</td>
<td>Abstain</td>
<td>Answer</td>
<td>Yes</td>
<td>No</td>
<td>-1/-1</td>
</tr>
<tr>
<td>Pick Up</td>
<td>N/A</td>
<td>N/A</td>
<td>No</td>
<td>Yes</td>
<td>2/-1</td>
</tr>
</tbody>
</table>

• States -
 – Idle
 – Flee
 – Attack
 – Fight
 – Lie
 – Answer
 – Abstain
 – Accept Trade
 – Refuse Trade
 – Invisible
 – Dead

• Victory Objective - Obtain item 'Magic Sword'.

D. Fitness Function

The penalties applied to a solution’s fitness are listed in VI.

V. Results

A. Controllers

In all (1000) experimental runs, valid solutions were discovered. Figure 5 shows selected state transitions from the controllers generated in one run of the experiment. Using these controllers there were two valid paths to win the game.

1) a) Attack agent 4 to gain item Gold
 b) Trade item Gold for agent 3’s item Crossbow
 c) Ask agent 2 to learn fact Z’s location
 d) Attack agent 1 to obtain item Magic Sword
2) a) Ask agent 5, who abstains
 b) Intimidate agent 5 to learn fact How to spot Gold
 c) Pick up item Gold
 d) Trade item Gold for agent 3’s item Crossbow
 e) Ask agent 2 to learn fact Z’s location
 f) Attack agent 1 to obtain item Magic Sword

From these paths it can be seen that agents 1-5 are involved in at least one path. Actions ‘attack’, ‘ask’, ‘intimidate’, ‘trade’ and ‘pick up’ are all used in at least one path. This shows that as well as being viable, the controller set is optimally desirable for the given constraints.

B. Observed Output

The following capabilities have been demonstrated:

• Controllers can be generated that form a simple but coherent game where victory is possible.
• A developer can specify actions they wish the player to use and the controllers generated will feature at least one valid path to completion that features those actions.
• Multiple valid paths to victory can be generated and detected in a single solution.

C. Performance

No systematic testing has been carried out to measure complexity so far and the emphasis on testing has been on small scale situations so that results can be manually inspected and verified. In these examples, optimal solutions (fitness 0) have been generated at an average time of 271ms on an i5-2500K processor.
VI. Future Work

In this paper the motivation for the work has been to assess whether this concept has the potential to automate the design of agent controllers for RPG style games. The experiment described in this paper is on a very small scale. To test the validity of the concept in general, experimentation on a scale representative of real games will be required. We are in the process of examining scenarios from the World of Warcraft game to judge the number and type of interactions which will be required.

If our planned larger scale experiments prove successful, work will be carried out to determine whether additional benefits can be gained from this approach such as creating very large and complex FSMs that offer advantages over those that can be feasibly crafted by hand or used to guarantee minimum levels of variety over large populations of agents.

Further work is also required to ascertain exactly how and where the system would most effectively be deployed in the development process. For instance, the system could be deployed as described in this experiment to generate an entire set of agent controllers or it could be used to fine-tune the lower-level controllers in a hierarchical FSM template architecture or to provide bounded variations from a core template.

VII. Conclusions

The experiment described in this paper has shown that it is possible to evolve a set of controllers for agents in a computer game such that the gameplay resultant from using those controllers adheres to desired constraints. It has also been shown that it is possible to quantify certain gameplay properties and evaluate them from a candidate set of controllers. Both these findings have been made in a primitively small and simple scenario and further research is required to ascertain under which circumstances they will hold.

VIII. Acknowledgements

This work was supported by NSERC’s Discovery Grant Program under RGPIN 283304-2012 and by a doctoral award from the Dean of the School of Graduate Studies at Memorial University.

IX. Appendix

1) Acquire Item:
For a given item I:

Algorithm 1 Pseudocode for the algorithm to construct a sequence of actions to acquire a given item

INPUT: A ← agent that has possession of the target item I
INPUT: actions ← set of all actions the player can perform for each action a in actions do

if action a can result in acquisition of items then

if A has a transition T that can be satisfied by a then

LSTATES ← a list of all valid chains of actions that can result in A attaining the pre-requisite state TPRE of T.

LFACS ← a list of all valid chains of actions that can result in the player obtaining the pre-requisite fact TFACT necessary to execute T.

LITEMS ← a list of all valid chains of actions that can result in the player obtaining the pre-requisite fact TITEM necessary to execute T.

end if

LJOINS ← a list of all valid chains of actions found by joining a to all the combinations made by combining one chain each from LSTATES, LFACS and LITEMS.

LCHAINS ← LCHAINS + LJOINS

end if

end for

Output LCHAINS

2) Acquire Facts:
For a given fact F:

Algorithm 2 Pseudocode for the algorithm to construct a sequence of actions to acquire a given fact

INPUT: A ← agent that has possession of the target fact F
INPUT: actions ← set of all actions the player can perform for each action a do

if action a can result in acquisition of facts then

if A has a transition T that can be satisfied by a then

LSTATES ← a list of all valid chains of actions that can result in A attaining the pre-requisite state TPRE of T.

LFACS ← a list of all valid chains of actions that can result in the player obtaining the pre-requisite fact TFACT necessary to execute T.

LITEMS ← a list of all valid chains of actions that can result in the player obtaining the pre-requisite fact TITEM necessary to execute T.

end if

end for

Output LCHAINS
Algorithm 3 Psuedocode for the algorithm to construct a sequence of actions that results in a given agent being in a given state

\[L_{\text{CHAINS}} \leftarrow \text{null} \]

for each transition \(T \) that has a post-state \(S \) do

if If the social relation of \(T \) is the same as the relation between the player and \(A \) then

Create a List \(L_{\text{FACTS}} \) of all valid chains of actions that can result in the player obtaining the pre-requisite fact \(T_{\text{FACT}} \) necessary to execute \(T \).

Create a List \(L_{\text{ITEMS}} \) of all valid chains of actions that can result in the player obtaining the pre-requisite fact \(T_{\text{ITEM}} \) necessary to execute \(T \).

Create a list \(L_{\text{JOINS}} \) of all valid chains of actions found by joining \(a \) to all the combinations made by combining one chain each from \(L_{\text{STATES}}, L_{\text{FACTS}} \) and \(L_{\text{ITEMS}} \).

Add \(L_{\text{JOINS}} \) to \(L_{\text{CHAINS}} \).

end if

end for

Output \(L_{\text{CHAINS}} \)

3) Attain State:
For a given agent \(A \) and state \(S \):

REFERENCES

